

RENCANA PEMBELAJARAN SEMESTER

Program Studi: S1 Kimia

Fakultas: Sains dan Matematika Universitas Bakti Indonesia

			I .				
Mata Kuliah:	Fisika Modern	Kode:	KIM 2407	SKS:	2	Smt:	4
Dosen Pengampu:	Thorieq Moh. Yusuf, M.Pd.						
Capaian Pembelajaran	Mahasiswa program studi Fisika mampu menguasai (C3) konsep-konsep dan prinsip-prinsip fisika modern berupa						
Mata Kuliah:	teori relativitas, dualisme gelombang partikel, dan Model Atom, tanpa membuka catatan minimal 60% benar.						
Deskripsi singkat Mata	Fisika Modern merupakan "jembatan" teori klasik dan modern, yang mencakup tema teori relativitas dan Dualisme						
Kuliah:	Gelombang Partikel. Bagian Teori Relativitas menyinggung tentang relativitas umum dan banyak membahas teori						
	relativitas khusus dari konsep ruang dan waktu, kerangka acuan inersia, postulat Einstein, Transformasi Lorentz,						
	dilatasi waktu, kontraksi panjang, paradoks kembar, dinamika relativistik, invarian dan kovarian. Sedangkan bagian						
	Dualisme Gelombang - Partikel mencakup radiasi benda hitam, efek fotolistrik, efek foto listrik, Efek Compton,						
	Produksi pasangan, serapan gelombang elektromagnetik, hipotesa de Broglie. Ketidakpastian Heisenberg, difraksi						
	elektron, mikroskop elektron, pengantar persamaan Schroedinger. Pada bagian akhir adalah Model atom yang						
	mencakup model atom Thomson, Rutherford, Bohr, produksi sinar X, difraksi sinar X, model atom menurut teori						
	kuantum						

1	2	3	4	5	6	7	
Minggu	Kemampuan Akhir tiap tahapan	Bahan Kajian/	Metode	Waktu	Pengalaman Belajar	n Belajar Penilaian	
ke	pembelajaran	Pokok Bahasan	Pembelajaran	vvaktu	Mahasiswa	Kriteria & Indikator	Bobot (%)
1	Mahasiswa mampu menguasai konsep	Teori Relativitas	- Ceramah	TM: 1 × (4 ×	Diskusi kelompok	- Ketepatan	5%
	teori relativitas umum (C2), tanpa	Umum	- Diskusi	50")		menjelaskan konsep	
	membuka catatan minimal 60% benar.			BT + BM =		teori relativitas	
				$1 \times [(4 \times 60'') +$		umum	

				(4 × 60")]			
2,3	Mahasiswa mampu menguasai konsep Teori Relativitas Khusus dan menjelaskan (C3/C2) konsep ruang dan waktu, kerangka acuan inersia, invarian dan kovarian, kegagalan teori klasik, postulat Einstein, tanpa membuka catatan minimal 60% benar.	Teori Relativitas Khusus	- Ceramah - Diskusi - Latihan soal	TM: 2 × (4 × 50") BT + BM = 2 × [(4 × 60") + (4 × 60")	Diskusi kelompok Latihan	 Ketepatan mendefinisikan konsep ruang dan waktu, kerangka acuan inersia, invarian dan kovarian, Ketepatan menjelaskan kegagalan teori klasik, postulat Einstein 	10%
4,5	Mahasiswa mampu menguasai konsep Teori Relativitas Khusus dan menjabarkan dan menerapkan (C4) Transformasi Lorentz, dilatasi waktu, kontraksi panjang, paradoks kembar, dinamika relativistik, tanpa membuka catatan minimal 60% benar.	Teori Relativitas Khusus	- Ceramah - Diskusi - Latihan soal	TM: 2 × (4 × 50") BT + BM = 2 × [(4 × 60") + (4 × 60")]	Diskusi kelompok Latihan dan penjabaran	- Ketepatan menjabarkan dan menerapkan aplikasi dari Transformasi Lorentz, dilatasi waktu, kontraksi panjang, paradoks kembar,	15%
6,7	Mahasiswa mampu menjabarkan dinamika relativistik dan penerapannya (C4) pada energi kinetik relativistik, energi total reltivistik, momentum relativistik, massa relativistik tanpa membuka catatan minimal 60% benar.	Dinamika Relativistik	- Ceramah - Diskusi - Latihan soal	TM: 2 × (4 × 50") BT + BM = 2 × [(4 × 60") + (4 × 60")	Diskusi kelompok Penerapan dan Penjabaran	- Ketepatan menjabarkan dan menerapkan pada energi kinetik relativistik, energi total relativistik, momentum relativistik, massa relativistik.	15%

8,9	Mahasiswa mampu menguasai konsep dualisme gelombang partikel pada cahaya, penerapan dan penjabarannya (C4) yang mencakup radiasi benda hitam, efek fotolistrik, efek foto listrik, Efek Compton, Produksi pasangan, tanpa membuka catatan minimal 60% benar.	Dualisme Gelombang Partikel	- Ceramah - Diskusi - Latihan soal	TM: 2 × (4 × 50") BT + BM = 2 × [(4 × 60") + (4 × 60"	Diskusi kelompok Penerapan dan Penjabaran	- Ketepatan menjelaskan dan mengaplikasikan radiasi benda hitam, efek fotolistrik, efek foto listrik, Efek Compton, Produksi pasangan, serapan gelombang elektromagnetik	15%
10, 11	Mahasiswa mampu menguasai konsep dualisme gelombang partikel pada materi dan penerapannya (C4/C3) yang mencakup hipotesa de Broglie, Ketidakpastian Heisenberg, difraksi elektron, mikroskop elektron, pengantar persamaan Schroedinger tanpa membuka catatan minimal 60% benar.	Dualisme Gelombang Partikel	CeramahDiskusiLatihan soal	TM: $2 \times (4 \times 50")$ BT + BM = $2 \times [(4 \times 60") + (4 \times 60")]$	Diskusi kelompok Penerapan	- Ketepatan menjelaskan dan mengaplikasikan hipotesa de Broglie, Ketidakpastian Heisenberg, difraksi elektron, mikroskop elektron, pengantar persamaan Schroedinger	15%
12,13, 14	Mahasiswa mampu menguasai konsep model atom dan penerapannya (C3) yang mencakup model atom Thomson, Rutherford, Bohr, produksi sinar X, model atom menurut teori kuantum tanpa membuka catatan minimal 60% benar.	Model Atom	- Ceramah - Diskusi - Latihan soal	TM: 3 × (4 × 50") BT + BM = 3 ×[(4 × 60") + (4 × 60"]	Diskusi kelompok Penerapan	- Ketepatan menjelaskan dan menerapkan model atom Thomson, Rutherford, Bohr, produksi sinar X, difraksi sinar X, model atom menurut teori kuantum	25%

Daftar Referensi:	■ Modern Physics, Kenneth S. Krane
	 Modern Physics, Arthur Beiser
	Fundamental University Physics, Vol III, Alonso dan Finn
	Atomic Physics, Enge
	dII